
Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Growth of functions
- Asymptotic Notation

Data Structures and Algorithms (47)

Growth of Functions

The order of growth of running time of algorithms is a simple
characterization of algorithm´s efficiency

comparison of relative performance of alternative algorithms

For most algorithms, the running time depends on the input size

In the simplest case the input size is given by an integer, i.e.

Running times are defined in terms of functions with natural
numbers as their domains

Data Structures and Algorithms (48)

Asymptotic efficiency: How does the running time increase as the
input size approaches infinity

Example 1
a) The running time Citer(i) of algorithm fibiter

- measured by the number of arithmetic operations executed -
is

Citer(i) = i-1 for i ≥ 2

b) if we include the “increase index” of a for loop
as an additional arithmetic operation

C’iter(i) = 2(i-1) for i ≥ 2

Growth of Functions

Data Structures and Algorithms (49)

Example 2:
The running time Crec(i) of algorithm fibrec –
measured by the number of arithmetic operations executed -
is bounded as follows

3·2(i-1)/2 – 3 ≤ Crec(i) ≤ 3·2i-1 – 3
(hint: we know that 2(i-2)/2 ≤ fi ≤ 2(i-2))

Example 3:
The running time Cisq(i) of algorithm fibisq –
measured by the number of arithmetic operations executed -
is bounded as follows

Growth of Functions

Data Structures and Algorithms (50)

Observation: Information about the runtime of an algorithm may be
given in various ways, e.g.

exactly (fibiter)
by giving an upper bound (fibisq) or
by giving upper and lower bounds (fibrec)

By comparing the behavior of the algorithms
for increasing input size (⇨ increasing values of i),
we recognize that

neither constant factors
nor terms added

are of relevance, if related to the order of growth

Growth of Functions

Data Structures and Algorithms (51)

Asymptotic notation: “Θ”

Definition
For a given function g we define the set Θ(g(n)) of functions
(pronounced “theta” of “g of n”)

Θ(g(n)) =

Interpretation
Θ(g(n)) is the set of functions that can be “sandwiched”
between c1g(n) and c2g(n) for sufficiently large values of n
For all the function is equal to to within a constant factor
We say: is an asymptotically tight bound for

Growth of Functions

0nn ≥)(nf)(ng
)(ng)(nf

Data Structures and Algorithms (52)

Asymptotic notation: “Θ”

Illustration of Θ(g(n)):
f(n) is “sandwiched” between c1g(n) and c2g(n) for n>n0:

f(n) ∈ Θ(g(n))

Growth of Functions

Example:

)(3 22
2
1 nnn Θ∈−

Data Structures and Algorithms (53)

Asymptotic notation: “Θ”

Some simple examples

Be T(n) the runtime of a given algorithm and input size n
If T(n) is a linear function of n, we write T(n) ∈ Θ(n)
If T(n) is a quadratic function of n, we write T(n) ∈ Θ(n2)
and so on

Growth of Functions

Data Structures and Algorithms (54)

Asymptotic notation: “Θ”

For given Θ(g(n)) we assume that the limiting function g(n)
is asymptotically nonnegative: g(n) is nonnegative whenever n
is sufficiently large
(⇔ there is a n0 ∊ℕ, so that g(n) ≥ 0 for all n > n0)

Otherwise Θ(g(n)) is the empty set
(Consequently, are asymptotically nonnegative)

Of course the cost functions we deal with
are asymptotically nonnegative functions

Growth of Functions

))(()(ngnf Θ∈

Data Structures and Algorithms (55)

Asymptotic notation: “Θ”

Alternative (and usual) notation
Instead of writing f(n) ∈ Θ(g(n)) we often write f(n) = Θ(g(n))
E.g. we could write T(n) = Θ(n2) instead of T(n) ∈ Θ(n2)
But: Be aware that this is a convention
(not to be confused with the common meaning of equality!)

This allows to write expressions as
3n2 + 45n – 35 = 3n2 + Θ(n)

meaning:
There is a function f(n) ∊ Θ(n), so that:

3n2 + f(n) = 3n2 + 45n – 35

Growth of Functions

Data Structures and Algorithms (56)

Asymptotic notation: “Θ”

Example 1:

Show that f(n) = 3n2 + 2n -½ ∈ Θ(n2)
We must find c1, c2 ∈ ℝ+, n0 ∈ℕ such that for all n > n0

c1n2 ≤ 3n2 + 2n -½ ≤ c2n2

Example 2:

Show that f(n) = 3·log2(n) ∉ Θ(n)
We must show that it is not possible to find c1, c2 ∈ ℝ+, n0 ∈ℕ
such that for all n > n0

c1n ≤ 3·log2(n) ≤ c2n

Growth of Functions

Data Structures and Algorithms (57)

Asymptotic notation: “Θ”

What can be said about the asymptotic growth
of the complexity of our “Fibonacci algorithms”?

iterativ (fibiter) (for i ≥ 2)
a) Citer(i) = i-1
b) C’iter(i) = 2·(i-1)

recursive (fibrec) (for i ≥ 2)
3·2(i-1)/2 – 3 ≤ Crec(i) ≤ 3·2i-1 – 3

iterative squaring (fibisq) (for i ≥ 2)

Growth of Functions

Data Structures and Algorithms (58)

Asymptotic notation: “Θ”

Solution for the iterative algorithm (fibiter)

a) Citer(i) = Θ(i)
b) C’iter(i) = Θ(i)

Although C’iter(i) > Citer(i) holds for all arguments,
the different cost functions show the same asymptotic growth!

Growth of Functions

Data Structures and Algorithms (59)

Asymptotic upper and lower bounds

One result of the analysis of algorithms
for computing Fibonacci numbers is:

Obviously there is a need for asymptotic upper bounds
and asymptotic lower bounds of functions!

Similar to the definition Θ (a set of “sandwiching” functions)
we will define sets of functions
providing asymptotic lower or asymptotic upper bounds

Growth of Functions

Data Structures and Algorithms (60)

Asymptotic notation: “O”

Definition
For a given function g we define the set O(g(n)) of functions
(pronounced “big-oh” of “g of n”)

O(g(n)) =

Interpretation
O(g(n)) is the set of functions
for that c·g(n) is an upper bound for large values of n

(an asymptotic upper bound)

Growth of Functions

Data Structures and Algorithms (61)

Asymptotic notation: “O”

Illustration of O(g(n)):
f(n) is bounded above by c·g(n) for n>n0:

f(n) ∈ O(g(n))

Growth of Functions

Data Structures and Algorithms (62)

Asymptotic notation: “O”

What can be said about the asymptotic growth
of the recursive and iterative squaring “Fibonacci algorithms”?

recursive (fibrec) (for i ≥ 2)
3·2(i-1)/2 – 3 ≤ Crec(i) ≤ 3·2i-1 – 3

Crec(i) = O(2i)

iterative squaring (fibisq) (for i ≥ 2)

Cisq (i) = O(log2(i))

Growth of Functions

Data Structures and Algorithms (63)

Asymptotic notation: “Ω”

Definition
For a given function g we define the set Ω(g(n)) of functions
(pronounced “big omega” of “g of n”)

Ω(g(n)) =

Interpretation
Ω(g(n)) is the set of functions
for that c·g(n) is a lower bound for large values of n

(an asymptotic lower bound)

Growth of Functions

Data Structures and Algorithms (64)

Asymptotic notation: “Ω”

Illustration of Ω(g(n)):
f(n) is bounded below by c·g(n) for n>n0:

f(n) ∈ Ω (g(n))

Growth of Functions

Data Structures and Algorithms (65)

Asymptotic notation: “Ω”

What can be said about lower bounds of the asymptotic growth
of the recursive “Fibonacci algorithm”?

recursive (fibrec) (for i ≥ 2)

3·2(i-1)/2 – 3 ≤ Crec(i) ≤ 3·2i-1 – 3

Crec(i) = Ω(2i/2)

Growth of Functions

Data Structures and Algorithms (66)

Basic relations between Θ, Ω and O

It follows from the definitions
that for each asymptotic nonnegative function g(n)

Θ(g(n)) ⊆ O(g(n))
Θ(g(n)) ⊆ Ω(g(n))

It follows from the definitions
that for all asymptotic nonnegative functions f(n) and g(n)

f(n) = O(g(n)) and f(n) = Ω(g(n)) f(n) = Θ(g(n))

Growth of Functions

O(g(n)) Ω(g(n))Θ (g(n))

⇔

Data Structures and Algorithms (67)

Asymptotic upper and lower bounds

The asymptotic upper and lower bounds defined by O and Ω
are not necessarily tight bounds
Example:

Be f(n) = n2+5n-17
O(n3) is an asymptotic upper bound for f (f ∊ O(n3))
Ω(n) is an asymptotic lower bound for f (f ∊ Ω(n))

But these bounds are not tight

Note:
O(n2) and Ω(n2) are tight bounds for f
As f ∈ O(n2) and f ∈ Ω(n2) f ∈ Θ(n2)

Growth of Functions

Data Structures and Algorithms (68)

Non-tight asymptotic upper bounds

The function g(n) = n3 is an upper bound for f(n) = n2+5n-17
that grows significantly faster than f(n)
(or f(n) grows significantly slower than g(n)).

Definition
For a given function g we define the set o(g(n)) of functions
(pronounced “little-oh” of “g of n”)

o(g(n)) =

Growth of Functions

Data Structures and Algorithms (69)

Non-tight asymptotic upper bounds

If f(n) ∈ o(g(n)), then

Example:
g(n) = n3 is a non-tight asymptotic upper bound
for f(n) = n2+5n-17

Obviously

Growth of Functions

Data Structures and Algorithms (70)

Non-tight asymptotic lower bounds

The function g(n) = n is a lower bound for f(n) = n2+5n-17
that grows significantly slower than f(n)
(or f(n) grows significantly faster than g(n)).

Definition
For a given function g we define the set ω(g(n)) of functions
(pronounced “little-omega” of “g of n”)

ω (g(n)) =

Growth of Functions

Data Structures and Algorithms (71)

Non-tight asymptotic lower bounds

If f(n) ∈ ω (g(n)), then

Example:
g(n) = n is a non-tight asymptotic lower bound
for f(n) = n2+5n-17

Obviously

Growth of Functions

Data Structures and Algorithms (72)

Some rules for the so-called Landau symbols Θ, Ω, ω, O and o
Non-tight bounds imply “bounds in general”

Transitivity

Growth of Functions

Data Structures and Algorithms (73)

Some rules for the so-called Landau symbols Θ, Ω, ω, O and o
Reflexivity

Symmetry

Transpose symmetry

Growth of Functions

Data Structures and Algorithms (74)

Asymptotic notation (Supplement)

Remember:
The notation 3n2 + 45n – 35 = 3n2 + Θ(n) means:

There is a function f(n) ∊ Θ(n),
so that:

3n2 + f(n) = 3n2 + 45n – 35

We could also write:
3n2 + 45n – 35 = 3n2 + o(n2)

which stands for:
“only the term 3n2 is important, the other terms may be neglected,
as these do not contribute significantly to its growth”

Growth of Functions

