Introduction to
Data Structures and Algorithms

Chapter: Growth of functions

- Asymptotic Notation

Friedrich-Alexander-Universitat
Erlangen-Niirnberg smim

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstralle 3, 91058 Erlangen

Growth of Functions
B The order of growth of running time of algorithms is a simple

characterization of algorithm’s efficiency

= comparison of relative performance of alternative algorithms

B For most algorithms, the running time depends on the input size

B |n the simplest case the input size is given by an integer, i.e.

B Running times are defined in terms of functions with natural
numbers as their domains

Data Structures and Algorithms (47)

Growth of Functions

m Asymptotic efficiency: How does the running time increase as the
input size approaches infinity

m Example 1
a) The running time C, (i) of algorithm fibiter

- measured by the number of arithmetic operations executed -
IS
Cior(i) =i-1 foriz2

b) if we include the “increase index” of a for loop
as an additional arithmetic operation

Clior(i) = 2(i-1) foriz 2

Data Structures and Algorithms (48)

Growth of Functions

B Example 2:
The running time C (i) of algorithm fibrec —
measured by the number of arithmetic operations executed -
is bounded as follows

320123 < C_ (i) < 32+ -3

(hint: we know that 2(-2/2 < f, < 2(-2))

m Example 3:
The running time C;.,(i) of algorithm fibisq —
measured by the number of arithmetic operations executed -
is bounded as follows

Cisg(1) <26 (|logy(z —1)] +1)+1

Data Structures and Algorithms (49)

Growth of Functions

® Observation: Information about the runtime of an algorithm may be
given in various ways, e.g.
= exactly (fibiter)
= by giving an upper bound (fibisq) or
= by giving upper and lower bounds (fibrec)

® By comparing the behavior of the algorithms
for increasing input size (= increasing values of i),

we recognize that
= neither constant factors

= nor terms added
are of relevance, if related to the order of growth

Data Structures and Algorithms (50)

Growth of Functions

Asymptotic notation: “O”

Definition

® For a given function g we define the set ©(g(n)) of functions
(pronounced “theta” of “g of n”)

©(g(n)) =

{ f(n) | there exist ¢, co € IRT and ny € IN
such thatc; - g(n) < f(n) <cy-g(n) forall n > ny }

Interpretation

m O(g(n)) is the set of functions that can be “sandwiched”
between c,g(n) and c,g(n) for sufficiently large values of n

® Forall n>n, the function f (n) is equal to g(n) to within a constant factor
We say: g(n) is an asymptotically tight bound for f(n)

Data Structures and Algorithms (51)

Growth of Functions

Asymptotic notation: “O”

lllustration of ©(g(n)):
f(n) is “sandwiched” between c,g(n) and c,g(n) for n>n,:

f(n) € ©(g(n))
Example:

o o8 in*-3ne®(n’)

llll

Data Structures and Algorithms (52)

Growth of Functions

Asymptotic notation: “©”
Some simple examples
® Be T(n) the runtime of a given algorithm and input size n

= |f T(n) is a linear function of n, we write T(n) € O(n)

= |f T(n) is a quadratic function of n, we write T(n) € ©(n?)
= and soon

Data Structures and Algorithms (53)

Growth of Functions

Asymptotic notation: “©”

m For given ©(g(n)) we assume that the limiting function g(n)
is asymptotically nonnegative: g(n)is nonnegative whenever n
is sufficiently large
(e there is a n, €N, so that g(n) 2 0 for all n > n,)

m Otherwise ©(g(n)) is the empty set
(Consequently, f(n)e®(g(n)) are asymptotically nonnegative)

m Of course the cost functions we deal with
are asymptotically nonnegative functions

Data Structures and Algorithms (54)

Growth of Functions

Asymptotic notation: “©”

B Alternative (and usual) notation
= |nstead of writing f(n) € ©(g(n)) we often write f(n) = ©(g(n))
= E.g. we could write T(n) = ©(n?) instead of T(n) € ©(n?)
= But: Be aware that this is a convention
(not to be confused with the common meaning of equality!)

®m This allows to write expressions as
= 3n2+45n—-35=3n2+ 0O(n)
meaning:
There is a function f(n) € ©(n), so that:
3n?2 +f(n) = 3n?+45n-35

Data Structures and Algorithms (55)

Growth of Functions

Asymptotic notation: “O”

m Example 1:

Show that f(n) = 3n? + 2n - € ©(n?)
= We must find c,, ¢, € R+, n, eN such that for all n > n,

c,N?<3n?+ 2n-%2 < ¢c,n?

m Example 2:

Show that f(n) = 3-log,(n) ¢ O(n)

= We must show that it is not possible to find c,, ¢, € R+, n, eN

such that for all n > n,

c,n = 3-log,(n) < c,n

Data Structures and Algorithms

(56)

Growth of Functions

Asymptotic notation: “©”
B What can be said about the asymptotic growth
of the complexity of our “Fibonacci algorithms™?
= iterativ (fibiter) (fori = 2)
a) Ciori) = i-1
b) C'io i) = 2:(i-1)

= recursive (fibrec) (fori=2)
32023 < C, (i) = 3:2-1-3

= jterative squaring (fibisq) (fori=2)

Cisg(1) <26 (|logy(s —1)] +1) +1

Data Structures and Algorithms

(57)

Growth of Functions

Asymptotic notation: “©”

B Solution for the iterative algorithm (fibiter)

a) Gl = ()
) Clieli) = O()

m Although C’, (i) > C,(i) holds for all arguments,
the different cost functions show the same asymptotic growth!

Data Structures and Algorithms (58)

Growth of Functions

Asymptotic upper and lower bounds

B One result of the analysis of algorithms
for computing Fibonacci numbers is:

= Qbviously there is a need for asymptotic upper bounds
and asymptotic lower bounds of functions!

m Similar to the definition © (a set of “sandwiching” functions)
we will define sets of functions

providing asymptotic lower or asymptotic upper bounds

Data Structures and Algorithms (59)

Growth of Functions

Asymptotic notation: “O”

Definition

®m For a given function g we define the set O(g(n)) of functions
(pronounced “big-oh” of “g of n”)

O(g(n)) =
{ f(n) | there exist c € R and ny € IN
such that f(n) < c¢-g(n) forall n > ng }

Interpretation

m O(g(n)) is the set of functions
for that c-g(n) is an upper bound for large values of n

(= an asymptotic upper bound)

Data Structures and Algorithms (60)

Growth of Functions

Asymptotic notation: “O”

lllustration of O(g(n)):
f(n) is bounded above by c-g(n) for n>n,:

f(n) € O(g(n))

no

Data Structures and Algorithms (61)

Growth of Functions

Asymptotic notation: “O”

B What can be said about the asymptotic growth
of the recursive and iterative squaring “Fibonacci algorithms™?

= recursive (fibrec) (fori=2)

32012_3 < C (i) < 321 -3

= Crecli) = O(2)

= jterative squaring (fibisq) (fori=z 2)
Cisg(i) <26 ([logy(i —1)] +1)+1
= Cigq (1) = O(log,(i))

isq

Data Structures and Algorithms (62)

Growth of Functions

Asymptotic notation: “Q”

Definition

®m For a given function g we define the set Q(g(n)) of functions
(pronounced “big omega” of “g of n”)

)(g(n)) =

{ f(n) | there exist c € IR™ and ny € IN
such that ¢ - g(n) < f(n) forall n > ny }

Interpretation

m Q(g(n)) is the set of functions
for that c-g(n) is a lower bound for large values of n

(= an asymptotic lower bound)

Data Structures and Algorithms (63)

Growth of Functions

Asymptotic notation: “Q”

lllustration of Q(g(n)):
f(n) is bounded below by c-g(n) for n>n,:

f(n) € Q (g(n))

Data Structures and Algorithms (64)

Growth of Functions

Asymptotic notation: “Q)”

® \What can be said about lower bounds of the asymptotic growth
of the recursive “Fibonacci algorithm™?

= recursive (fibrec) (fori=2)
320123 < C, (i) £ 3:2-1-3

= Crec(i) = Q(27)

Data Structures and Algorithms (65)

Growth of Functions

Basic relations between 0, Q and O

m |t follows from the definitions
that for each asymptotic nonnegative function g(n)

= O(g(n)) € O(g(n))
= O(g(n)) € Q(g(n))
m |t follows from the definitions
that for all asymptotic nonnegative functions f(n) and g(n)
= f(n) = O(g(n)) and f(n) = Q(g(n)) < f(n)=0(g(n))

© (g(n))

Data Structures and Algorithms (66)

Growth of Functions

Asymptotic upper and lower bounds

m The asymptotic upper and lower bounds defined by O and Q
are not necessarily tight bounds

B Example:
Be f(n) = n?+5n-17
= O(n3) is an asymptotic upper bound for f (f € O(n3))

= Q(n) is an asymptotic lower bound for f (f € Q(n))

= But these bounds are not tight

= Note:

= O(n?) and Q(n?) are tight bounds for f
= Asfe O(n?)and fe Q(n?) = fe O(n?)

Data Structures and Algorithms (67)

Growth of Functions

Non-tight asymptotic upper bounds

B The function g(n) = n3is an upper bound for f(n) = n?+5n-17
that grows significantly faster than f(n)
(or f(n) grows significantly slower than g(n)).

Definition
®m For a given function g we define the set o(g(n)) of functions
(pronounced “little-oh” of “g of n”)

o(g(n)) =

{ f(n) | forall c € IR" there exists ny € IN
such that f(n) <c-g(n) forallm > ny }

Data Structures and Algorithms (68)

Growth of Functions

Non-tight asymptotic upper bounds

m If f(n) € o(g(n)), then

f(n)

lim =
= g(n)

B Example:
g(n) = n® is a non-tight asymptotic upper bound
for f(n) = n?+5n-17

, . nP45n—17
Obviously nlmgo z =0
—> n

Data Structures and Algorithms (69)

Growth of Functions

Non-tight asymptotic lower bounds

B The function g(n) = n is a lower bound for f(n) = n?+5n-17
that grows significantly slower than f(n)
(or f(n) grows significantly faster than g(n)).

Definition
B For a given function g we define the set w(g(n)) of functions
(pronounced “little-omega” of “g of n”)

w(g(n)) =

{ f(n) | forall c € IR" there exists ny € IN
such that ¢ - g(n) < f(n) foralln > ng }

Data Structures and Algorithms (70)

Growth of Functions

Non-tight asymptotic lower bounds

m Iff(n) € w (g(n)), then

lim f(n)
® Example:

g(n) = n is a non-tight asymptotic lower bound
for f(n) = n?+5n-17

— OO

Obviously

o n?+5m =17
lim =

n—0oC n

0

Data Structures and Algorithms (71)

Growth of Functions

Some rules for the so-called Landau symbols O, Q, w, O and o

" f(n)=o(g(n)) implies f(n)=O(g(n))
f(n) = w(g(n)) implies f(n) = Qg(n))

B Transitivity

f(n) =0©(g(n)) and g(n)=0(h(n)) imply f(n)=0O(h(n))
f(n) =0(g(n)) and g(n)=O(h(n)) imply f(n)=0O(h(n))
f(n)=Q(g(n)) and g(n imply f(n) = Q(h(n))

))
)

f(n) =olg(n)) and g(n)=
))

0
and g¢g(n)=w

Growth of Functions

Some rules for the so-called Landau symbols O, Q, w, O and o
B Reflexivit
Y fn) = 6(f(n))
f(n) =0O(f(n))

f(n) = Q(f(n))
H Symmetry

f(n) =6(g(n)) ifandonlyif g(n)=O(f(n))
B Transpose symmetry
f(n)=0(g(n)) ifandonlyif g¢g(n)
f(n)=o0(g(n)) ifandonlyif g¢(n)

Q(f(n))
w(f(n))

Growth of Functions

Asymptotic notation (Supplement)

B Remember:
The notation 3n? +45n—-35 = 3n?+ O(n) means:

= There is a function f(n) € O(n),
so that:

3n?2 +f(n) = 3n?+45n-35
B We could also write:
= 3n2+45n-35 = 3n? + o(n?)

Which stands for:

= “only the term 3nZ2is important, the other terms may be neglected,
as these do not contribute significantly to its growth”

Data Structures and Algorithms (74)

